
www.manaraa.com

UNIVERSITY OF CALIFORNIA,
IRVINE

Semantic Software Engineering - A Survey with an Application

THESIS

submitted in partial satisfaction of the requirements
for the degree of

MASTER OF SCIENCE

in Electrical and Computer Engineering

by

Adrianna Leung

Thesis Committee:
Professor Phillip Sheu, Chair

Professor Rainer Doemer
Professor Nader Bagherzadeh

2012

www.manaraa.com

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent on the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

All rights reserved. This edition of the work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

UMI 1508197
Copyright 2012 by ProQuest LLC.

UMI Number: 1508197

www.manaraa.com

© 2012 Adrianna Leung

www.manaraa.com

ii

DEDICATION

To

my mom

in recognition of her words of encouragement throughout the years

www.manaraa.com

iii

TABLE OF CONTENTS

 Page

LIST OF FIGURES iv

LIST OF TABLES v

ACKNOWLEDGMENT vi

ABSTRACT OF THE THESIS vii

CHAPTER 1 1

CHAPTER 2 11

CHAPTER 3 36

CHAPTER 4 60

REFERENCES 64

APPENDIX A 70

APPENDIX B 72

www.manaraa.com

iv

List of Figures

Figure 3.1 50

Figure 3.2 51

Figure 3.3 59

www.manaraa.com

v

List of Tables

Table 1.1 3

Table 1.2 4

Table 1.3 6

www.manaraa.com

vi

Acknowledgment

I would like to express the deepest gratitude to my committee chair, Professor Phillip

Sheu, who not only possesses tremendous knowledge in the area of semantic

computing, but also the great enthusiasm in semantic software engineering research.

Without his guidance and patience with my work schedule, this thesis would never have

been complete.

I would also like to thank my committee members, Professor Rainer Doemer and

Professor Nader Bagherzadeh for taking the time to review my thesis.

www.manaraa.com

vii

ABSTRACT OF THE THESIS

Semantic Software Engineering - A Survey with an Application

By

Adrianna Leung

Master of Science in Electrical and Computer Engineering

University of California, Irvine, 2012

Professor Phillip Sheu, Chair

As our modern software systems get larger and more complex, engineers constantly

look for ways to improve software productivity. With the advent of semantic web,

researchers start applying semantic computing technologies in software

engineering. This thesis presents a survey of the state-of-art research in the field of

semantic software engineering. In this thesis, I discuss the advantages of the various

ontology-enabled approaches to software engineering, including the techniques

proposed to automatically translate software requirements expressed in natural

language to software designs and the various approaches to deriving semantics from

software source code. I also introduce an interactive tool for software development,

providing a means for software developers to create semantic annotations and improve

the readability of software programs.

www.manaraa.com

1

Chapter 1

According to Merriam-Webster dictionary, ontology is “a branch of metaphysics

concerned with the nature and relations of being.” It is the science of describing various

types of entities and how they are related. Today, the term ontology is also commonly

defined as “specification of a conceptualization.” It is a formal, explicit description of the

concepts and relationships that can exist for an agent or a community of agents. [1]

Ontology engineering, the study of methods and methodologies for building ontologies,

has received enormous attention in the recent years, as many researchers recognize

that the potential uses of ontologies are not limited in artificial intelligence. Not only

does ontology provide a means for knowledge sharing, it also allows us to integrate

heterogeneous, distributed information sources and reuse existing knowledge. A

number of methodologies, such as DOGMA and ONTOCLEAN, have been proposed in

the last decade to guide ontology builders to create ontologies that are not only highly

usable, but are also reusable.

Contemporary ontology can generally be categorized according to its generality level.

Upper, ontology (also known as top-level or fundamental ontology) refers to ontologies

that can be used across all knowledge domains. Such ontologies describe only generic

concepts and relations. Cyc and DOLCE are examples of upper ontologies. Domain

ontologies, on the other hand, are only concerned with a specific domain. They aim to

represent all entities and their relations with one another within a specific domain.

Because they often specialize the terms of the top-level ontology, they are sometimes

known as the lower-level ontologies.

www.manaraa.com

2

Meta-modeling and Ontology

A meta-model is “a precise definition of the constructs and rules needed for creating

semantic models.” [2] Meta-models may be used:

• As a "schema" for semantic data that needs to be exchanged.

• As a language that supports a particular methodology or process

• As a language to express additional semantics of existing information.

Both meta-models and ontologies are used to represent relations between entities in a

domain. A valid meta-model is ontology, yet ontologies may not necessarily be modeled

explicitly as meta-models.

Ontology Languages

To facilitate interoperability between different agents, knowledge, represented in

ontologies, are commonly encoded in ontology specification languages. The two

widely-used ontology modeling paradigms are frame and description logic (DL). Frame-

based languages, such as FLogic, are sometimes known as the traditional ontology

language. A frame system is effectively a collection of related frames. We can think of

a frame as a network of nodes and relations. There is a fixed “top levels” frame,

followed by lower level terminals (also known as slots) that are filled by specific

instances or data. Smaller “sub frames” must meet the conditions specified by their

terminals.

Description logic, on the other hand, has emerged as a more popular paradigm in

recent years, as the popularity of Semantic Web soars. Endorsed by World Wide Web

Consortium (W3C), Web Ontology Language (OWL) and Resource Description

www.manaraa.com

3

Framework (RDF) / RDF Schema are not only the standards used for the description of

heterogeneous information across the web, they can also be used to link any

information with semantics defined in an ontology. A RDF statement comprises an

object, property, and value, commonly referred to as a “triple”. A triple allows structured

and semi-structured data to be shared across different domains. OWL, built on top of

RDF, provides three increasingly expressive sublanguages. Of the three flavors, OWL-

DL is the most popular choice amongst ontology engineers for its description logic

reasoning capabilities. It was designed to support the existing Description Logic

business segment and has desirable computational properties for reasoning systems.

Like most other contemporary ontologies, OWL has the following components:

● An individual, also known as an instance in other languages, is an object in the

domain of our interest. We can infer individuals as “instances of classes”.

● A class is a concept, a collection, or a type of things. It is used to group a set of

things with similar characteristics (i.e. properties). In taxonomy, a class may contain a

collection of individuals, or it may also be a subclass of another class. Subclasses are

subsumed by their superclasses.

● A property, or an attribute, describes a characteristic of a class or an instance.

They are binary relation on the instances, and are used to link two individuals together.

Properties are also known as roles in description logics and relations in UML.

While both OWL and RDF are essentially languages used to integrate heterogeneous

and distributed data, OWL comes with a larger vocabulary and stronger syntax. It also

provides more powerful machine reasoning than RDF.

OWL Lite OWL DL OWL Full

www.manaraa.com

4

Compatibility with
RDF

No No
All valid RDF
documents are
OWL full

Classes
Descriptions

The only class
description available
in OWL lite is
IntersectionOf

Classes can be
described as
UnionOf ,
ComplementOf,
IntersectionOf, and
enumeration

Classes can be
described as
UnionOf ,
ComplementOf,
IntersectionOf, and
enumeration

Table 1.1 Comparison of OWL Lite, OWL DL, and OWL Full

There are benefits to use either frame or DL. Frame is a good choice when one is

trying to create ontologies for domains with closed-world semantics, while DL is the

preferred approach when DL reasoning is needed. There are also research efforts

made in combining OWL-DL and Flogic [3].

In addition to OWL, Semantic Web Rule Language (SWRL) is a rules-language,

combining sublanguages of the OWL Web Ontology Language (OWL DL and Lite) with

those of the Rule Markup Language (Unary/Binary Datalog). Since it is built on OWL

DL, it shares the formal semantics and the rules are expressed in terms of OWL

concepts, such as class and property. But while it may be more expressive than OWL

DL, it has a disadvantage of undecidability. Therefore, it is recommended to express

an ontology in OWL if possible, unless an additional expressive power is needed.

OWL Frame
Consistency Checking Constraint Checking
Open world assumption Closed world assumption
Multiple model Single model
Subclass relations can be inferred based
on class definition

All subclass relations must be asserted
explicitly

Table 1.2 Comparison of OWL and Frame

Query Languages

www.manaraa.com

5

Now that we have described our data in an ontology language, how do we go about

retrieving and manipulating the information expressed in an ontology language?

SPARQL [4] is the de facto query language for RDF. A SPARQL query may contain

triple patterns, conjunctions, disjunctions, and optional patterns. It only queries

information represented in a RDF graph, which is a set of triples. There is no inference

in SPARQL.

A commonly used query language for OWL is SPARQL-DL [5]. It uses SPARQL syntax

and provides OWL-DL semantics for SPARQL basic graph patterns.

Alternatively, we may use Semantic Query-Enhanced Web Rule Language (SQWRL) [6]

to retrieve knowledge from OWL ontologies. SQWRL is a SWRL based query language.

It provides SQL-like operations that support negation as failure, disjunction, counting,

and aggregation functionality. Similarly to SPARQL, in SQWRL we try to capture all

concepts and relationships present in a pattern. Since SQWRL understands the

semantics of OWL and SWRL rules, it understands not only the explicit, but also the

inferred knowledge.

Ontology Editing Tools

There are a number of editing tools supporting the creation of ontologies. For example,

Protege [7] from Stanford University is popular open source ontology editor and

knowledge acquisition system that facilitate the modeling of ontology in Frames and in

OWL.

Furthermore, Jena [8] is a Java framework for building Semantic Web applications. It

provides extensive Java libraries for helping developers develop code that handles RDF,

www.manaraa.com

6

RDFS, RDFa, OWL and SPARQL. Jena also comes with a rule-based inference engine

to perform reasoning based on OWL and RDFS ontologies, and a variety of storage

strategies to store RDF triples in memory or on disk.

Reasoners

A reasoner refers to a software application that is capable of inferring logical

consequences from a set of asserted facts or axioms. It usually uses inference rules,

expressed in the form of an ontology, and first-order predicate logic to perform

reasoning. Either forward chaining or backward chaining may be used for inference.

Some of the standard reasoning services include consistency checking, concept

satisfiability, classification, and realization.

An example of an OWL reasoner is Pellet [9]. Pellet is a popular Java-based reasoner

in the industry. Besides the basic reasoning functionalities, it also has support for

SPARQL-DL conjunctive query answering, and incremental reasoning.

Other active reasoners include FaCT++ [10] and HermiT [11]. While HermiT is written in

Java, it is based a different reasoning algorithm called hypertableau calculus, so it is

theoretically faster. Unlike Pellet and HermiT, FaCT++ is developed in C++. Similar to

Pellet, FaCT++ uses the optimized tableau algorithm. However, FaCT++ has no rule

support. Both FaCT++ and HermiT are available as a Protégé plug-in, pre-installed for

Protégé 4.x.

Pellet FaCT++ HermiT

Language Java C++ Java

www.manaraa.com

7

Reasoning algorithm Tableau Tableau Hypertableau

Rule support Yes No Yes

Table 1.3 Comparison of Pellet, FaCT++, HermiT

1.1 Ontology and Software Engineering

In software engineering, an ontology “defines a set of representational primitives with

which to model a domain of knowledge or discourse.” [12] Ontology helps us better

understand the structure of information among software agents. When knowledge is

formally stored in a structured manner, terminological ambiguities can be greatly

reduced. More importantly, we can easily perform analysis on the domain knowledge

and potentially reuse. In [13], Pisanelli et al identified seven features of ontologies:

● an explicit semantic and taxonomy;

● a clear link between concepts, their relationships, and generic theories

● lack of polysemy within a formal context;

● context modularization;

● minimal axiomatization to pinpoint differences between similar concepts

● a good politic of name choice

● a rich documentation.

Numerous researchers proposed integrating ontologies in a number of disciplines in

software engineering, such as:

● Software engineering methodologies. Software engineers can use ontology to

represent software engineering methodologies such as the waterfall model.

● Requirements engineering

www.manaraa.com

8

○ Elicitation. Ontology can help us define complete, unambiguous, and

consistent requirements.

○ Requirement modeling. Ontology can be used to formally represent the

requirements model, the acquisition structures for domain knowledge, as well as the

knowledge of the application domain

○ Requirement analysis. An ontology system may help us measure the

quality of a requirements document and predict requirements changes in the future

version of the document.

● Software design

○ Software modeling. Currently, the Model Driven Architecture-based

languages have very little to no support in reasoning, so ontology can act as an

extension to the current MDA approach.

○ Component-based software engineering. Similar to ontology engineering,

the goal of CBSE is create a repository of reusable and independently modifiable

software components. Researchers proposed using ontologies to define the semantics

of components, along with the relations and communications between them.

○ Design patterns. While design patterns and ontologies are not identical,

design patterns can be viewed as the more concrete description of solutions to specific

problems in software design.

○ Programming languages and compilers. Researchers define general

ontologies of programming languages with entities like identifiers, reserved words, and

construct, in hope to translate knowledge bases from one language to another.

● Verification.

www.manaraa.com

9

○ Test case generation. Ontology can help generate basic test cases. Once

our software designs are represented in ontologies, OWL provides a set of test cases

that can be exploited to verify the functional requirements are met.

○ Test case reuse. A test ontology allows us to better manage and retrieve

existing test cases for reuse.

● Maintenance.

○ Documentation. Ontology allows engineers to make use of software

artifacts. Researchers actively propose ways to automatically populate ontologies from

source code and documentations.

○ Search. We can use SPARQL /SQWRL to look up relevant information

about the software system stored in ontologies

○ Bug tracking. A bug ontology model can give us insights into why certain

modifications are made to the source code.

○ Updating. Ontologies that captured details of code revisions can help us

detect potential problems and investigate bugs in a system

Organization

The remainder of this thesis is structured as follows: In Chapter 2, I elaborate on the

recent research activities in semantic software engineering, especially approaches to

translate natural language requirement specifications into software designs and the

techniques to derive semantics from source code. Chapter 3 presents my annotation

tool that enables users to create semantic annotations of the source code. Finally, I

www.manaraa.com

10

conclude this thesis with the summary and ideas for future work in Chapter 4.

www.manaraa.com

11

Chapter 2

Semantic software engineering is the area of study that applies the semantic

technologies in the field of software engineering. It is concerned with the representation

of goals in formal specifications, sometimes known as software modeling, along with the

extraction of meaning from formal languages.

Semantic Software Engineering

Most tasks in the software development lifecycle, especially requirements elicitation,

software design, are difficult to automate because they involve a tremendous amount of

domain knowledge. In [13], Verma et al. describe how a collection of semantic models,

called semantic bus, may help to automate steps in the development process. By

defining semantic representation in an ontology, tools used in different phases can

communicate knowledge across phases.

In the previous chapter, we studied ontology, the backbone of semantic techologies. In

this chapter, I will elaborate on the recent research activities in the field of semantic

software engineering and look at how the ontology-enabled semantic technologies may

improve the reusability, sharing and extensibility of software.

2.1 Requirement Engineering

Requirements Engineering (RE) is “the branch of software engineering concerned with

real-world goals for, functions of, and constraints on software systems. It is also

concerned with the relationship of these factors to precise specifications of software

behavior, and to their evolution over time and across software families.” [14]

www.manaraa.com

12

A software requirements specification is the complete description of how a software

system should behave and its other characteristics. Requirements in the specification

can generally be categorized into functional and non-functional. Functional

requirements define the behavior of a software application, or tasks that must be

performed by a system. Non-functional requirements, on the other hand, are also

known as the quantification requirements. Unlike functional requirements, quantitative

requirements define a system’s non-behavioral goals, such constraints, quality

attributes, and quality goals. Requirements engineers are responsible for defining both

functional and non-functional goals of all the stakeholders affected by a software system.

Thus, a good communication of the requirements is very important. However, these

goals may not always be explicit and can sometimes be difficult to articulate. A vast

majority of requirement specifications (RSs) are written in the inherently ambiguous

natural language (NL). Kormer has identified the following problems commonly seen in

software requirements [15]:

● Nominalization

● Incompletely specified process words

● Nouns without reference index

● Incompletely specified conditions

● Modal verbs of necessity

Ontology in RE

In recent years, many research activities have been devoted to applying ontology in RE,

hoping to overcome the problems mentioned above.

www.manaraa.com

13

One of the most challenging activities in RE is requirements elicitation, in which analysts

must gather all requirements and identify the domain constraints through meetings and

interviews with the stakeholders. An application domain ontology can help maintain all

information relevant to the application. Meanwhile, a quality ontology helps manage

various qualities concerning the software, an application’s non-behavioral attributes.

Moreover, these two types of ontologies may serve as a reminder of all the necessary

elicitation questions the requirements analysts need to ask or discuss with the

stakeholders.

Modeling requirements and domain knowledge

Riechert et al. describe in [16] an ontology, known as SWORE, to support the RE

process semantically. It defines the fundamental concepts in RE, such as Stakeholder

and Abstract Requirement. Abstract requirements may have goals, scenarios, and

requirements as subclasses. These subclasses have properties of defines and details,

allowing us to model how they are interdependent on each other.

Dobson and Sawyer present in [17] an ontology that provides a common language to

define dependability requirements. Unlike SWORE, it focuses on non-functional

attributes such as availability, reliability, safety, integrity, maintainability, and

confidentiality.

Al Balushi et al. [18] propose an ontology-enabled NFR tool, called ElicitO, to help

capture precise and comprehensive quality requirements that represent constraints on

functional requirements in elicitation interviews. ElicitO is based on two ontologies: a

www.manaraa.com

14

quality ontology and a functional domain ontology. The quality ontology includes

metrics, characteristics, and sub-characteristics defined in ISO/IEC 9126.

Soffer et al. [19] propose a framework to model off-the-shelf information system

requirements (OISR). The ontology-based OISR model has four elements, namely

business processes, business rules, information objects, and required system services.

The framework uses ontology to support the evaluation of the available modeling

language that may guide us in the selection, implementation and integration of

purchased off-the-shelf information system.

Ontology with Use Case

In requirements engineering, a use case is used to graphically describe the interactions

between an external actor (or a user) and a software system. It is a modeling approach

that is often used to improve the understandability. A use case usually includes actors,

tasks, extension positions, as well as preconditions and postconditions. As today’s

software systems become larger and more complex, we need a large collection of use

cases to adequately specify all the different ways to use the system. Thus, it makes

sense that we reuse use cases whenever possible. Retrieving a use case created in

the past is, however, not a trivial task. Researchers proposed using ontology to

annotate use cases with semantic information. In addition, the application domain and

the system behavior ontology can support a smarter retrieval of use cases based on this

semantic information.

In [20], Caralt and Kim describe an approach that uses ontology to augment use cases

with semantic information for the easier and more accurate retrieval of use cases in the

www.manaraa.com

15

future. It uses a subset of ResearchCyc, also known as ACTION, as well as WordNet

for linguistic relationships. ACTION, combined with domain ontology and linguistic

ontology (WordNet), can be used to resolve the ambiguities of the natural language in

specifications.

Ontology with Goals and Scenarios

For many years, researchers look for ways to eliminate ambiguous words and

incomplete constraints that often appear in requirements. Prior to designing and

implementing software applications, models are often built to elaborate requirements

and explore designs. Not only does modeling help facilitate communication between

requirements engineers and the stakeholders, it also helps requirements engineers

identify details that may be missed during the initial elicitation. For today’s larger and

more complex systems, however, creating software models is not a trivial task.

A number of approaches and methods have been proposed to automate the model

extraction from requirements written in natural languages. Traditionally, there are two

major approaches to modeling software requirements. Goal modeling is one of them.

Goal models illustrate functional and non-functional goals and their impact on each

other through AND/OR graphs. They help requirements engineers check for

completeness and conflicts. However, they may sometimes be hard to elicit, or too

abstract, covering only the classes of intended behaviors, leaving out important details.

Shibaoka et al. [21] enhanced the goal modeling process with ontology called GOORE.

GOORE supports the decomposition of goals during the requirement elicitation process.

Given an input of a domain ontology and an incomplete goal graph, the content of the

www.manaraa.com

16

goal descriptions expressed in natural language can be mapped into the words in the

thesaurus part of the ontology. A set of inferred ontological concepts can then be added

to the goal graph. Using inference rules expressed in Prolog, relationships between

concepts can automatically be discovered as well. GOORE supports goal refinement

and completeness checking.

Another approach to modeling is scenario-based. Requirement engineers sometimes

represent the expected behavior of a software system with a set of agent interaction

scenarios. Unlike the goal-oriented models, scenarios are more informal and more

easily accessible to stakeholders. However, they are inherently partial and can only

cover certain specific behaviors. They may also lead to premature design decisions

about event sequencing and distribution of responsibilities among system agents.

Lee and Gandhi propose in [22] an Ontology-based Active Requirements Engineering

framework that combines the modeling techniques such as goal-driven scenario

composition, requirements domain model, and viewpoints hierarchy.

Semantic Wiki

The Semantic Web has garnered a lot of attention in the research community in the past

decade. One of the most popular applications of the semantic web is the semantic wiki.

A semantic wiki is an enhanced wiki that incorporates an underlying model of its page

content knowledge. Unlike a traditional wiki, it allows users to add annotations and

store interrelations between pages. Many also support ontology reasoning. With the

rise of semantic technology, more researchers propose the use of semantic wiki for

www.manaraa.com

17

requirement engineering. It helps engineers learn about the application domain and

quality characteristics before they go elicit requirements.

In [23], Decker et al. suggested a new paradigm of Wikitology that supports the

exchange of reusable specification documents. Specification documents are “self-

organized”, given the nature of the wiki system. More importantly, the domain

knowledge can easily be expanded, making reuse feasible. Using Wikitology,

requirements engineers can easily link related and relevant documents together,

offering suggestions for references. Moreover, they can use semantic annotations to

define and check for consistencies.

Supporting Tools

In addition to modeling, ontology can also help us translate requirements into software

design models. In [24], Verma et al. present a tool called Requirements Analysis Tool

(RAT) that supports both a number of analysis on requirement specifications. It uses

three types of user-defined glossaries (agent, action, and modal) to parse requirements

documents and extract structured content. Given a requirement document, RAT outputs

its structured content containing the requirement syntax type, all the identified agent,

action, and modal word, along with different constituents of the conditional requirements.

Domain specific knowledge can be defined using the requirements relationship glossary.

The glossary lists a set of requirement classification classes, their super class, all the

keywords used to identify the class, as well as the relationship between every class.

With the extracted content, requirements can then be translated into a semantic graph,

represented in OWL. Functional Design Creation Tool (FDCT) then uses the structured

www.manaraa.com

18

content and a number of domain specific glossaries from RAT to generate high-level

UML class diagrams.

Czarnecki et al. [25] study the relationships between feature models and ontologies.

They describe two different approaches, view derivation and view integration, to

combine feature models and ontologies using configurable Object Constraint Language

constraints.

In [26], [27], Tichy et al. present a modeling tool called the AutoModel and a natural

language processing tool called SALE Model Extractor (SALE MX) that aim to improve

the requirements engineering process by creating software models from requirement

specifications expressed in natural language, using methods such as statistical

translation and semantic roles.

AutoModel is consisted of two main components, a UML improver and RESI. RESI is a

requirement analyzing tool that can identify ambiguous, faulty, or inaccurate

specifications and can offer common sense alternatives.

First, RESI imports a specification in graph format. It then adds information to the

specification by tagging part of speech. Using ontology, RESI applies rules to correct

common natural language problems, such as ambiguous words, normalization,

incompletely specified process words, similar meanings, and nouns without reference

index and incorrect usage of universal quantifiers. After the specification is edited, it

can be exported back into the original format of the specification.

In support of AutoModel, SaleMX is a suite of natural language processing tools that

can automatically generate UML domain models given an annotated requirement

specifications expressed in natural language. After the requirement specifications are

www.manaraa.com

19

annotated using a custom made annotation language SALE (SENSE Annotation

Language for English), they can be automatically translated into a graph definition for

GrGen, a graph rewrite system. The annotated document can then either be translated

into an ordinary graph or into a class diagram. Once the UML models are generated,

engineers may create executable code using model driven architecture (MDA) tools.

2.2 Design, Implementation, and Integration

After the stakeholders decide on how the end product should behave and have the

requirements baselined, engineers begin design the solution. After the architectural

design is complete, programmers can then realize the design by coding in the language

of their choice. While software productivity has improved significantly with the

introduction of object oriented programming (OOP), it is still not enough to satisfy the

demand placed on the software industry. Instead of searching for ways of writing code

faster, we want to write less of it. As our modern software systems get larger and more

complex, the implementation and integration also become increasingly expensive and

error-prone. The structure of software system is hidden, or invisible. Software

developers, especially the new comers, often need to invest a tremendous amount of

time to understand software applications developed in a collaborative environment.

Often, the external evidence we have of software is its behavior when executing. It

creates the tremendous learning and understanding burden that makes personnel

turnover a disaster.

Ontology in design

www.manaraa.com

20

It is the goal of many researchers to automate the process of transforming requirements

into design and design into source code. By mapping application domain concepts onto

object-oriented concepts, we can then transform knowledge from ontology into

programming language, thus generating source code from domain knowledge.

Mapping of ontology into source code

Eberhart describes in [28] two approaches to generate an inference engine and storage

repository from RDF schema and RuleML. One is OntoJava. OntoJava is a cross

compiler that is responsible for the conversion of RDF schema and RuleML into a set of

Java classes. Eberhart also introduced a system called OntoSQL to automatically

generate necessary tables/views, and act as a RuleML engine.

Kalyanpur et al. introduced a framework called HarmonIA that automatically map OWL

ontologies into Java [29]. It generates a set of Java interfaces and classes, in which an

instance of Java class is mapped to a class of ontology with properties, class

relationships, and restrictions.

Stevenson and Dobson [30] created a tool called Sapphire that can generates bytecode

for a set of Java interfaces corresponding to a set of OWL ontologies.

Design pattern

Design patterns are “descriptions of communicating objects and classes that are

customized to solve a general design problem in a particular context.” [31] In essence,

they are incomplete designs that serve as the templates or the descriptions of solutions

to many commonly occurring design problems.

www.manaraa.com

21

Searching for design patterns

Kampffmeyer and Zschaler proposed an approach to help inexperienced developers

find design patterns for tasks at hand [32]. The Design Pattern Intent Ontology (DPIO)

describes in OWL the relations between design pattern, design problem, and problem

concepts, where a design pattern is a solution to one or more design problems

constrained by problem concept. By formalizing the intent of design patterns, it is

believed that users can retrieve the relevant design patterns based on a rough problem

description. Kampffmeyer et al. created the Design Pattern Wizard, a front end interface

assisting users in generating well-formed queries.

Component-based software engineering

Component-based software engineering (CBSE) is a relatively new approach to

software engineering. CBSE has emerged as one of the most popular paradigms in

recent years for its promising results, such as reduced development time and improved

productivity. It refers to the software development using reusable parts, also known as

components. Components may be a software package, a Web service, or a module

that encapsulates a set of related functions (or data).

Code search

But to successfully reuse software components, we must locate them and possibly

modify to fit in the software system we are building. Code-search engines provide the

backbone for the new generation of reuse support tools. The field of software reuse has

www.manaraa.com

22

come a long way in the past decade, as search engines become more and more

sophisticated over the years. Keyword-based searching still remains the most

commonly used approach for search engines. It is the easiest to implement, but it is

also the most naive approach however. Users must know the exact names of the

components to use for each query in order to get relevant results. But many search

engines, such as Google Code Search, have gone beyond simple keyword search.

In addition to keyword matching, they incorporate other more sophisticated algorithm to

retrieve software components. One popular approach is signature matching, which

matches a query type with library components. More recently, researchers are trying to

apply ontologies to improve the accuracy of the search results.

Searching for code snippets and components

Zygkostiotis et al. introduced a semantic annotation tool that helps engineers search

and retrieve software components in [33]. To do so, a software profile is automatically

created in the registry and published for every component in a software system. These

profiles, known as Advertisement Software Component Profiles, contain inputs from

users such as identifier, description, and repository URI, along with information like

category, inputs, and outputs that we get by parsing the source code and retrieving the

corresponding semantic annotations. During a search, the tool takes the profile

attributes as search parameters and matches with the profiles found in registry.

Kannan and Srivastava [34] present an approach that extracts the domain knowledge

and service abstractions from design diagrams of existing software solutions and

represent it in UML format making it more reusable.

www.manaraa.com

23

Happel et al [35] proposed an infrastructure for software reuse called KOntoR. KOntoR

architecture consists of two major elements: an XML-based metadata repository

component to intelligently describe software artifacts independently from a particular

format in ontology, and a knowledge component which comprises an ontology

infrastructure and reasoning to leverage background knowledge about the artifacts. By

combining the explicit and implicit knowledge about the system, KOntoR can derive new

information about the system. It uses ontology to integrate information gathered from

software artifacts. This resulted central repository of ontologies allows users to

efficiently make SPARQL queries to retrieve code fragments needed for an application.

Sugumaran and Storey [36] propose an approach to retrieve a reusable design objects

from a component repository. They use domain models to stores the objectives,

processes, actions, actors, and objects. They combine this information with an ontology

that provides information on if/how the objects are related. A prototype was

implemented to prove that the use of ontology offers the semantics of the application

domain which results in better component searches.

Situation Awareness

Situation awareness [37] refers to “a human appropriately responds to important

informational cues. This definition contains four key elements: (1) humans, (2) important

informational cues, (3) behavioral cues, and (4) appropriateness of the responses.

Important informational cues refer to environmental stimuli that are mentally processed

by the human. The appropriateness of the responses implies the comparison of the

response with an expected response or a number of possible expected responses.”

www.manaraa.com

24

In software engineering, researchers study situation-awareness to handle information

overload situations in an enterprise scale software systems. We design situation-aware

systems as a preventive measure.

Matheus et al. [38] describe a situation-awareness application called SAWA that uses

SWRL / OWL to represent a supply logistics scenario. They also

Situation-awareness is not a trivial task. Situations are often hard to predict. Currently,

SA techniques are only able to detect situations that have already occurred in the past,

and, hence, are not applicable for predicting critical situations before they occur for the

first time. However, critical situations that endanger life usually do not occur frequent

enough to obtain meaningful training data for machine learning.

Baumgartner et al. [39] propose using different ontologies to describe qualitative facts

for achieving situation awareness, along with techniques thereupon predicting future

situations without historic data.

2.3 Testing and Verification

After a software system is implemented, the next step is get the software tested to

ensure quality. Software testing, also known as verification, is an important phase in the

development cycle. It is the process of validating and verifying that the product meets

the requirements set forth by the customers and that it functions without any defects or

bugs. Software testing can generally be categorized into black box testing and white

box testing:

www.manaraa.com

25

Black box testing is when the tester has no knowledge of the internal workings of the

product. White box testing, on the other hand, refers to the method. Unit-testing is an

example of white box testing.

Software testing can be very labor intensive and costly. For many years, researchers

look for ways to automate the software testing process. There are generally two parts

to test automation. First, we need to generate test cases. Then, we execute them.

Commonly, many engineers write scripts to auto execute tests on software systems.

This type of automation still requires manual generation of test cases. Ideally, we would

like to auto generate and execute test cases, minimizing or eliminating all human

intervention.

Ontology in Verification

Ontology can help ensure or improve software quality in a number of ways. To better

manage software testing, ontologies have been created by engineers to describe

various testing tasks during the test process. As software systems become larger and

more distributed, agent-based testing becomes a popular approach. Ontology may be

used to facilitate the communication and interaction between agents.

Code Review

A number of researchers have also proposed to use ontology to create a query service

that can help detect bad code smell. Code smell is a warning sign of a potential

problem in software design. Unlike errors, code smell does not necessarily result in

www.manaraa.com

26

errors. It is simply an indication of a poor design that may eventually lead to a deeper

problem. To get rid of the bad code smell, source code often gets refactored.

In [40], Luo et al. present an ontology that describes the relationship between code

smell and anti-patterns. An anti-pattern is essentially a commonly recurring design

solution. They formally describe the concepts of anti-patterns, code smells, and the

corresponding refactoring solutions in a knowledge domain model. A formal

representation of this interrelationships provides guidance to developers in the removal

of code smell. By eliminating anti-patterns in the source code, we believe that the

quality of the software will improve and be less error-prone. It is also believed that the

source code automatically becomes easier to read and understand.

In [41], Yu et al. describe bug patterns in SWRL rules and Java program specification in

an ontology model. They propose parsing Java source code into the Abstract Syntax

Tree (AST), then automatically map it to the program ontology model. The two models

are then exported into an OWL file, which serves as an input to a rule engine. The

output of the rule engine should output inference results, indicating whether there is a

bug.

Annotations and Testing

One of the most labor intensive types of software testing is GUI testing. The reason

being that it is not trivial to include all the possible sequences of event interactions. A

few researchers propose using annotations to better understand the possible inputs and

outputs.

www.manaraa.com

27

Annotation is a note added to a text. In software engineering, programmers often add

annotations to the source code to improve readability and explain design rationale.

In [42], Rauf et al. proposed combining the use of ontology and semantic annotation to

automatically generate test cases for GUI testing oracle development. In this approach,

the ontology is built using document specifications, expert opinions, the interactions in

the GUI test framework, as well as the event-flow model that represents all possible

sequences of events that can be executed on the GUI. Semantic annotations for test

cases can be derived from this ontology.

Auto-generate test cases and test case reuse

Test case creation is not a trivial task as it requires some domain knowledge and the

complete understanding for the requirements. A number of researches have

demonstrated success in using ontology to represent the required knowledge needed

for test case generation.

In [43], Wang et al. proposed using semantic models to generate test data. Models,

such as OWL-S, can provide both behavioral information and semantic information on

the datatypes. They use the Petri-Net model to describe the structure and behavior of a

composite service. Together with the ontology in OWL-S, test cases can automatically

be generated.

Nasser created a knowledge based framework to generate unit tests from UML state

machines [44]. It exports the test criteria and high-level test descriptions in the form of

an ontology and rules. The ontology also contains information about the generated test

suites, allowing redundancy checking using reasoning.

www.manaraa.com

28

Test automation

In an ideal world, activities in the testing phase of the waterfall model would be

completely automated without any human intervention. This means we need to

automate test case creation and execution. In order to automate such process, we need

to define the expected input and the expected output in a machine processable format.

Ontology as test oracle

Test oracle is “a mechanism used by software testers and software engineers for

determining whether a test has passed or failed. [64]” Traditionally, software testers

would act as the oracle. In recent years, a number of research activities have been

done to automate the test oracle, in hopes to speed up the test process and reduce the

overall cost of software development.

Ontology can be used to represent domain knowledge in a machine processable

fashion, making it possible for agents to communicate with each other.

Maamri and Sahnoun [45] propose using agents to automate the generation and the

execution of test cases. This multi-agent system, known as MAEST, consists of four

types of agents: administrator which manages the entire system, testing which

supervises the entire testing process, interface which simulates the interaction between

the system and the users, and helping agents which perform various tasks such as test

case generation and act as the test oracle and determine the verdict of every test. Each

of the agents must understand the test process and be able to communicate with one

www.manaraa.com

29

another. To do so, a software testing ontology is designed to include test information

such as activity, method, capability, and artifact.

Nguyen et al. [46] developed a testing framework called eCat that not only supports the

(semi) automatic generation but also the execution of tests cases used for multi-agent

systems (MAS) testing. It consists of three main components: the Test Suite Editor

takes test data represented as Tropos-supported goal analysis diagrams and semi-

automatically test suites; the Autonomous Tester Agent is responsible for executing test

suites on a MAS; and the Monitoring Agent monitors communications among agent for

debugging purposes.

Test Documents

Serhatli and Alpaslan present in [47] an ontology-based automated question answering

system on software test document domain. They propose an algorithm to transform

queries in free text into an expression to be interpreted by a DL reasoner. To do so, test

documents are first described in a common language, OWL-DL. Then they use the web

interface to send queries to the Pellet Server. Question types are limited to who, what,

when, which, and how many.

2.4 Maintenance

Software maintenance is “the process of modifying a software system or component

after delivery to correct faults, improve performances or other attributes, or adapt to a

changed environment.” [48] Managing and maintaining software systems require a

tremendous amount of knowledge. Not only do we need to know the problems we need

www.manaraa.com

30

to solve and all its limitations / restrictions, we also need to concern ourselves with the

process used, language used, the architecture, how the parts fit together, as well as

how the system interacts with its environment. It is usually costly and time-consuming

to gather this knowledge. Therefore, it is important to find a way to efficiently store this

information.

Modeling software maintenance processes

One use of ontology in software maintenance is to model its processes. Formalizing the

relationship between the maintenance-related objectives and the maintenance activities

can help us quickly identify the relevant resources needed to reach the goal.

One of the earliest works to model software maintenance process in the form of

ontology was done by Kitchenham et al. Kitchenham et al. proposed in [49] to an

ontology that defines the investigation activity, modification activity, management activity,

quality assurance activity, and resource.

Ruiz et al develop an ontology called MANTIS [50] that extends Kitchenham’s work.

MANTIS is made up of three ontologies. The static aspect is defined in the

maintenance ontology, and the dynamic aspect is covered in the workflow ontology. A

measurement ontology is also introduced to represent both static and dynamic that are

not already capture by the other two ontologies.

On the other hand, Dias et al [51] create an ontology that focuses on the knowledge

about the software system itself, the maintainer’s skills, the maintenance activity, the

organizational structure, and the application domain.

www.manaraa.com

31

Program Comprehension

Program comprehension, or reverse engineering, is a research area that aims to

develop tools and methodologies to improve the understanding of software systems. It

focuses on recovering design and other relevant information from a system. Before a

software application can evolve in a controlled manner, engineers must first understand

the legacy or existing software at hand. Therefore, it is an essential though often costly

activity in software maintenance.

Meng et al. presented in [52] a formal process model to support program

comprehension using ontology and description logic. It includes information and the

interrelations of task, user, tool, artifact, software artifact, documents, and historical data.

Abebe and Tonella [53] described an approach to support program understanding by

extracting concepts and relations from the source code. Given the source code as input,

a term list is first created by decomposing the element names using camel case.

Configuration Management

As software evolves, changes are inevitable. With today’s large and complex software

systems, they may become a disaster if not handled correctly. Software configuration

management is [54] “unique identification, controlled storage, change control, and

status reporting of selected intermediate work products, product components, and

products during the life of a system.”

Shahri et al. [55] propose an approach to formalize and integrate the local configuration

constraints and version restrictions using OWL-DL ontologies. Ontology can help us

organize information needed for various activities in configuration management. Not

www.manaraa.com

32

only does it help in planning process, it also helps to identify thousands of software

artifacts that may be associated with each software release. In addition, ontology

allows us to query relevant information specific to a release and infer new facts.

Furthermore, software building tools may ontology to identify dependencies that must

hold between versions.

Modeling Software Artifacts

Software artifacts are essentially any items that are developed and used during the

software development cycle. They may include any test cases, requirements

documents, and design models. Ontology helps engineers create mappings between

software artifacts, making sure that they remain consistent as the software evolves. It

also allows engineers to query the changes made to a software application.

Hyland-Wood et al. [56] describe relationships between all object-oriented components,

also known as the Software Engineering Concepts (SECs) in the form of ontology. The

ontology models the Java language structure and represents information such as

classes and methods, tests, metrics, and requirements.

Tappolet et al. presented an extension to FAMIX with a set of OWL software ontology

models called EvoOnt [57]. EvoOnt includes three different models, namely the

software ontology model (SOM), the bug ontology model (BOM), and the version

ontology model (VOM). They include information such as software design, release

history, and bug reports. Tappolet et al also developed a semantic-based framework

that is based on the SPARQL query language. Today with EvoOnt, iSPARQL is an

extension of SPARQL that may be in software analysis.

www.manaraa.com

33

Witte et al. [59] created a uniform ontological model for source code and software

artifacts. They created a software ontology that consists of two sub-ontologies to

represent the source code and its corresponding documents. The source code sub-

ontology contains entities, such as methods and variables, and their associated actions.

The documentation sub-ontology covers concepts such as programming languages,

algorithms, data structures, and design decisions. Representing software artifacts in

the form of ontology allow engineers to share common concepts between source code

artifacts and documentations. It helps to establish traceability links between the

different resources, making the integration of information easier. Not only can

ontological models help us in program comprehension, techniques such as DL and

other reasoners can check for consistency of the artifacts.

Documentation

Software documentations refer to any written texts associated with a software project.

This may include requirements specifications, design documents, APIs, and user

manuals. The quality of these documentations is important in program comprehension

and for software reuse. As software systems get larger and more complex, it becomes

increasingly difficult and costly to maintain and manage these documentations.

Ambrosio et al.[60] propose an ontology-based approach to generate up-to-date and

consistent software documentation. They believe the key to create good

documentations, we must first find a way to organize and manage the artifacts

generated by the software development process. To do so, they suggest storing such

data in two ontologies. A structural component ontology may be used to store the

www.manaraa.com

34

different types of artifacts based on their internal structure. A domain component

ontology, on the other hand, may be used to represent the semantic relationships

between the artifacts described in the previously mentioned ontology.

Witte et al. also presented a tool called JavadocMiner [61] that can automatically assess

the quality of source code comments and export the result to an ontology. The tool

performs a set of heuristics to evaluate the quality of the comments expressed in natural

language and to check for the code/comment consistency. Together with an OWL

reasoner, JavadocMiner outputs an ontology that models the NLP related entities,

source code identifiers, comments, and entities in comments.

Security Ontology

Fenz et al. [62] study security in small and medium size enterprises (SMEs) and

propose a holistic solution based on a security ontology that includes low-cost risk

management and threat analysis. The security ontology consists of five sub-ontologies.

“Threat” is the main sub-ontology and includes proper countermeasures, threatened

infrastructures and proper evaluation methods. “Attribute” sub-ontology models the

impact of threats, “Infrastructure” describes infrastructure elements, “Role” maps

enterprise hierarchies and “Person” represents natural persons who are relevant for

security issues modeling.

Undercoffer et al. [63] analyzed around 4000 vulnerabilities and their exploit strategies

and after that they created an ontology, in DAML+OIL and DAMLJessKB, for specifying

computer attacks. They also summarize the main languages for specifying computer

attacks, including P-Best, STATL, LogWeaver, CISL, BRO, Snort Rules and IDMEF.

www.manaraa.com

35

Then they present several use case scenarios with common attacks, such as “Denial of

Service – Syn Flood”, “The Classic Mitnick Type Attack” and “Buffer Overflow Attack”.

www.manaraa.com

36

CHAPTER 3

In the previous chapter, I gave an overview of the current research activities in semantic

software engineering. In this chapter, I will present an application that incorporates the

semantic technologies to improve annotations added by software developers. Using

this semantic annotation tool, engineers should easily be able to answer questions such

as:

 What does this method/function do?

 Can I reuse this class?

 Where is this method/function being called?

 Will the code still behave the same if I remove this line?

 Why is this design approach used?

 Where is this variable being referenced?

Motivation

In order for a software system to be evolved and maintained, developers must first

understand how the existing code works and why a certain design approach is made.

Many programmers often underestimate the importance of adequate inline

documentations because they assume their code is straightforward and easy enough

for others to understand. Of course, we know that is usually not the case, as the lack of

good documentations often makes personnel turnover a disaster.

For software developers, good documentations not only give us a brief description of

the software component, but also tell (or remind) us how it may be (re)used and

perhaps reveal the design rationale. This way, the author or the programmers in the

www.manaraa.com

37

same project will not need to read every line of code trying to figure out what the code

does and / or why a certain approach is used years from code complete. For software

testers, good documentations reduce ambiguities and confusion over the expected

behavior of a software system when white box testing is being performed.

Nonetheless, documenting software is indeed a tedious task. But while it is a time-

consuming activity, in a long run good documentation may not only help developers

write better and less error-prone code, but also improve overall productivity.

So what defines good documentations? And how may an annotation tool help? Just like

many other development tools, the ultimate goal of an annotation tool is to help

programmers write good code faster. It provides a controlled vocabulary to describe

every software entity in question. A predefined list of terms allows for no ambiguities in

meaning, thus making it possible for machines to provide better answers to queries on

the existing code.

Semantic Annotations for Software Engineering

As mentioned earlier in this thesis, annotations are often added to software artifacts to

improve readability and explain design rationale. An annotation is, by definition, a

critical or explanatory note. In software engineering, annotations are meant to provide

information about a program that is not part of the code itself. Sometimes, annotations

and comments in code are used interchangeably. Conventionally, programmers use

annotations to:

 Planning -- Programmers sometimes put pseudo code in the comments. They

may also explain the logic behind the code in the comments.

www.manaraa.com

38

 Code description -- Programmers often clarify their intent in the comments. They

may put any constructive criticism in there to remind one that the code needs rework in

the future

 Algorithm description -- Programmers may explain the rationale behind why a

certain approach is chosen. Programmers may explain the algorithm in greater details if

the novel approach is taken.

In Java, annotations are structured syntaxes, similar to the programming language. Not

only may annotations be used for documentation purposes, compilers may also use the

annotations to detect errors or suppress warnings. They may also used to generate

auxiliary source code. However, that is beyond the scope of this thesis.

Generally speaking, there are no restrictions to what and when to annotate. But the

best annotations should help the programmers, new or experienced, understand the

code and prevent us from reintroducing old bugs. Ideally, they may provide details on

how to potentially reuse existing code fragments. Even if we are unable to reuse the

existing code fragment, we may still be inspired by it.

In the world of semantic computing, annotating is sometimes known as tagging. In the

recent years, tagging is a popular way to assign a keyword to a file, whether it is a

digital image or a blog post. Doing so helps in identification / classification and makes

searching easier. But while tagging is a great way to classify an item, a tagging system

does not have any information about the semantics of each tag.

Semantic annotations are not quite the same as tags. We can think of semantic

annotations as tags, enriched with meanings. They include information on how entities

www.manaraa.com

39

are related and associated with one another, allowing queries to retrieve more data,

including information that may not be explicitly related to the original search.

An annotation tool comes in handy in this regard. It helps to capture syntactic and

semantic descriptions of a software component and its functionality.

A Tool for Semantic Software Engineering

The purpose of an annotation tool is twofold. It should (1) guide users in the annotation

process so vocabulary may be controlled, and (2) create semantic annotations for

retrieval and better query answers in the future. To do so, the annotations need to be

converted to a machine processable format. I chose to translate this domain knowledge

into Web Ontology Language, for it has a larger vocabulary and stronger syntax than

RDF. More importantly, it provides better reasoning and inferences, given a reasoner.

My tool guides its users through a list of basic questions about the code, and stores the

answers in a form of ontology for future use. These questions include, but not limited

to:

 What is the expected behavior of this piece of code fragment?

 What does this variable store?

 Where is this method/function referenced?

They also serve as the competency questions for the ontology. To answer the above

questions, I developed an ontology that describes both the expected behavior and the

low level design. Users may define the expected behavior in both natural language

(free text) and formal language (unit test cases). Developers can learn the general

www.manaraa.com

40

functionality of a software component and get a basic understanding of the API by

looking at the unit tests. Unit test cases can oftentimes act as a dynamic

documentation. However, it is expensive and impractical to create an exhaustive test

suite for every component in a software system. This is the reason why I believe that it

is best to combine documentations expressed in both natural language and formal

language.

Modeling Source Code

An ontology to model source code written in object-oriented programming languages,

such as Java or C++. Even though object-oriented programming languages all differ in

syntax and in semantics, most of them share the following same fundamental concepts:

 Classes of objects

 A class describes an object with a state and a behavior

 Instances of classes

 An instance is an occurrence of an object. Every instance of a class has the

same set of attributes, but the value of the attributes vary from instance to

instance

 Methods (also known as function or procedure)

 A method is essentially a subprogram that acts on data, and may or not may not

return a value. It defines a behavioral property of a class

 Subtype polymorphism

 A type is a subtype if it supports every property of its supertype.

 Inheritance

www.manaraa.com

41

 A type inherits from its superclass if it only has a subset of its parent’s properties.

The meta-model I use to model semantic annotations is based on FAMIX core, a

programming language-independent model for representing object-oriented source

code.

The model contains many fundamental object-oriented concepts described above,

where a code fragment is an entity. Beneath Entity, at the top level, are the following

subclasses and properties:

Subclass – SourceLanguage

 Subclass -- Java

o Disjoints with Python, Cpp, and OtherLanguage

 Subclass -- Python

o Disjoints with OtherLanguage, CppLanguage, and Java

 Subclass -- Cpp

o Disjoints with PythonLanguage, OtherLanguage, and Java

 Subclass -- OtherLanguage

o Disjoints with Python, CppLanguage, and Java

Subclass -- SourceAnchor

 represents the pointer that references the location of the code fragment. It

should tell us where to find the code fragment

 Subclass – FileAnchor

o Disjoints with TextAnchor

 Subclass – TextAnchor

www.manaraa.com

42

o Disjoints with FileAnchor

Subclass --- Type

 represents either an abstract class, an interface, or a concrete class.

 Subclass – AbstractClass

o Disjoints with ConcreteClass and Interface

 Subclass -- Interface

o Disjoints with ConcreteClass and AbstractClass

 Subclass -- ConcreteClass

o The domain is Class, and the range is Class.

o Disjoints with PrimitiveType

 Object property -- hasSubclass / isSubclassOf

o The domain is Class, and the range is Class

 Object property -- hasMethod / isMethodOf

o The domain is Class, and the range is BehaviorEntity

 Object property -- hasSubtype / isSubtypeOf

o The domain is Class, and the range is Class.

 Object property -- hasAccessModifier / isAccessModifierOf

o The domain is Class, and the range of AccessModifier.

 Object property -- hasAttribute / isAttributeOf

o A class may have a handful of data property.

o The domain is Class, and the range is Attribute.

Subclass -- StructuralEntity

www.manaraa.com

43

 Refers to a data container with a static symbolic name but a dynamic value. It

has the following subclasses.

 Disjoints with BehaviorEntity and Type

 Object property -- References / isReferencedBy

 Subclass -- Attribute

 Subclass -- LocalVariable

o A variable given local scope.

o Disjoints with GlobalVariable

 Subclass -- GlobalVariable

o A variable that is accessible in every scope

o Disjoints with LocalVariable

Subclass -- BehaviorialEntity

 Code that performs a task

 Disjoints with StructuralEntity and Type

 Subclass -- Function

o Disjoints with Method

 Subclass -- Method

o Disjoints with Function

 Object property -- hasLocalVariable / isLocalVariableOf

o A variable accessible only within the method. The domain is Behavioria-

lEntity, and the range is LocalVariable.

 Object property -- calls / isCalledBy

o A function / method may call or be called by another function / method.

www.manaraa.com

44

o The domain is BehavioralEntity, and the range is BehavioralEntity

 Object property -- hasExpectedBehavior / isExpectedBehaviorOf

Subclass -- ExpectedBehavior

 Describes the expected behavior of a method or a function

 Data property -- Input

o If the code fragment is a method or a function, this is where the user en-

ters the input(s) or the parameter(s).

 Data property -- Output

o If the code fragment is a method or a function, this is where the user en-

ters the expected output if there is one.

 Data property -- Detail

o Detail may be any free-text that reveals more information about the ex-

pected behavior of an entity. It may be design rationale, change / update

information

 Data property -- TestSuite

o In additional to the natural language description, users can express the

expected behavior using test cases.

Subclass -- AccessModifier

 Internal

o Disjoints with public, protected, and private

 Public

o Disjoints with private, internal and protected

www.manaraa.com

45

 Private

o Disjoints with public, internal and protected

 Protected

o Disjoints with protected, internal, and public

Implementation

To prove the concept in the previous section, I created a prototype based on the

approach described above. This annotation tool is implemented in Python. It is

essentially an interactive word editor written using wxPython [65], the Python version of

the GUI API wxWidgets. The tool allows users to highlight a section of the source code,

and will guide users to enter relevant information about the source code.

Expressing annotation in OWL

Once the tool captures all the data needed, it stores all the relevant information in the

form of an ontology using FuXi [58], a Python library for all things semantic web

related. One of the primary modules in FuXi is Syntax. FuXi.Syntax incorporates the

InfixOwl library, which is based on the Manchester OWL syntax. It is the Python binding

for OWL Abstract Syntax that allows us to create or modify an ontology in OWL.

Retrieving annotations

www.manaraa.com

46

The InfixOwl library is capable of parsing OWL/XML files, thus also allows the tool user

to highlight a code fragment and retrieve information described in an existing relevant

ontology.

Running XUnit test cases

Upon request or changes, the tool retrieves and runs the relevant xUnit test cases to

ensure that the code behaves as expected. Xunit [66] refers any code driven unit

testing frameworks that are patterned on JUnit (Java) or SUnit (SmallTalk). SUnit and

JUnit were originally implemented by Kent Beck. Since then, the framework has been

ported to a number of other programming languages, including C++ (CppUnit) and

Python (PyUnit). They are all the de facto standard unit testing framework for their

respective languages. They let users write repeatable tests to ensure its functionalities

after refactoring or a bug fix. Tests can be aggregated into a test suite so they can all

be run in a single operation. The test results can either be outputted on the screen, or

saved as a text file.

Example - Annotating quick sort

To demonstrate the practicality of the tool, let us try using it to annotate a simple

program, quick sort. I implemented this algorithm in Python (Appendix A). Quick sort is

a classic sorting algorithm. In order to perform quick sort, we need to:

1. Choose a pivot, which may be any number from the input array.

www.manaraa.com

47

2. Partition the array into two empty sub-arrays. Rearrange the inputs so that the

numbers smaller than the pivot move to the left array and the numbers larger than the

pivot go to the right array.

3. Recursively sort the sub-arrays

Highlighting code fragment

Users can highlight any section of the source code. It may be a class, a

method/function, or simply a variable. Using the file location and the indexes of the

highlighted code, the tool can determine the sourceAnchor of the code fragment. Then

based on the file extension of the code, the tool will also know what programming

language is used. Languages supported include Java (.java), Python (.py), and C++

(.cpp).

Storing domain knowledge

After the user is finished annotating, the tool will store this information in OWL/XML in

the same directory as the source code. The tool also increments the version number

whenever user tries to save changes made to the source code. (See Figure 3.1)

Retrieving domain knowledge

If the source code has previously been annotated, the tool will display the existing

annotation for the highlighted code. It will then ask the user if he or she would like to

add new additional annotation. (See Figure 3.2)

www.manaraa.com

48

Running test cases

To ensure new changes do not introduce bugs, the tool can run the defined PyUnit test

cases (Appendix B) upon the code updates or request by users. (See Figure 3.2)

Querying semantic annotations

Unlike RDF, OWL does not yet have a standard query mechanism like SPARQL. But it

does not mean searching is not possible. Researchers have proposed a number of

query languages, such as SQWRL and SPARQL-DL. SPARQL-DL is a quite expressive

language which particularly allows to mix TBox, RBox, and ABox queries.

Example:

Type (?y, Method), PropertyValue(?y, hasMethod, toString)

On the other hand, SQWRL (Semantic Query-Enhanced Web Rule Language) is a

SWRL-based query language that can be used to query OWL ontologies. SQWRL

provides SQL-like operations to format knowledge retrieved from an OWL ontology.

Example:

Interface(?i) sqwrl:select(?i)

There are Protégé plug ins for both query languages.

Reasoning with an Inference Engine

www.manaraa.com

49

FuXi comes with two top-down (backward chaining) algorithms for SPARQL RIF-Core

and OWL 2 RL entailment. We may also the Fuxi command line script to has support

for efficient backwards and forward chaining to solve the answers to a user-specified

query.

Alternatively, we may use Pellet for OWL reasoning. There are multiple interfaces to the

reasoner, including a command line program and a programmatic API allowing a

standalone application to access its reasoning capabilities. It may also be integrated

with Protégé, or used concurrently with the popular Semantic Web framework Jena.

www.manaraa.com

Figure 3.1

50

www.manaraa.com

Figure 3.2

51

www.manaraa.com

52

Benefits and Other Potential Uses

As discussed previously, there are many benefits to modeling source code in ontology.

One main use is for program comprehension. Engineers may also use this as a tool to

detect code smell in the code and encourage best practice design solutions.

One of the commonly seen anti-patterns in object oriented programming is God class

(also known as a blob class). A God class refers to an object that does everything. It is

bad practice because it merges data and process, making the class process oriented

(also known as the procedural design). A God class makes a software component too

complex for reuse and testing. A good way to find such a class is to look for a class with

over 50 attributes and behavioral entities.

Another anti-pattern that may be detected is object orgy. It refers to objects that are

insufficiently encapsulated. Object orgy is most commonly seen in Perl. However, it

may happen in other programs written in any object-oriented languages that support the

use of access modifiers. When there is an object orgy, objects have access to another

objects’ attributes and may result in indiscriminate passing of objects. To detect object

orgy, we may look at all the public objects and see how they are being referenced and

called.

We can also use the ontology to determine if we have a Swiss army knife (also known

as a Kitchen Sink). In a Swiss army knife situation, there are more interfaces than

necessary. An easy search will tell us if there are more interfaces than implementation

classes.

In addition, we can look up the number of constants and where it is being referenced

and initialized to determine if we may have constant interface problem in a large

www.manaraa.com

53

software system. Constant interface happens when constants are defined in the

interface. It is considered a poor design because constants are often considered an

implementation detail and do not belong in the interface.

But how is this model different than the other models?

First and foremost, this model is language independent. Concepts in this model are

universal fundamental concepts commonly found in most object-oriented programming

languages. This is especially useful for developers working on a software application

that uses multiple programming languages.

Secondly, this tool allows users to annotate source code in both free-text and formal

language. Mapping test cases to the relevant code helps us check for consistency

between the expected behavior specified in free text by the original author of the code.

Limitations and Assumptions

This tool is a work-in-progress prototype. There is still a lot of room for improvement.

Known limitations are as follows:

Unit Tests

Currently, the tool only supports xUnit test frameworks. I also assume that the users of

the tool already know how to write xUnit test cases.

Manual annotation

This tool relies on the users to manually enter information about the source

code. There is also no checking to ensure that the annotations remain consistent with

the behavior of the software component after any code changes.

www.manaraa.com

54

Viewing

Currently, users can only view the retrieved annotations in plain text, or rely an ontology

editor to view the interrelations between the defined entities graphically.

Searching

Users of this tool are expected to be familiar with an OWL query language, because no

guidance is currently provided. This may create a learning curve for those who are not

already fluent in either SPARQL-DL or SQWRL.

Discussion

Semantic software engineering is the research area that studies the technologies used

to derive semantics from software artifacts, such as source code, requirements

specification, and documentations. These semantic technologies not only give us a

means to formalize domain knowledge, but also enable tools to improve quality and

reusability of software, along with the communication among its

stakeholders. Nonetheless, software semantics do not come cheap. Ontology creation,

for starters, is a tedious task.

One of the biggest challenges faced when I was creating the tool was determining how

to store the annotations. While there is no “correct” way to model a domain, the

ontology should at the minimum be able to answer the competency questions.

Furthermore, creating an ontology that is language independent means that I need to

have the basic knowledge in a number of programming paradigms. It is definitely not a

trivial task.

Because developing an ontology is such a time-consuming task, I learned that it is

www.manaraa.com

55

generally a good idea to first check to see if there exists a reusable ontology that we

may modify or extend. I went through a number of ontologies that I may reuse to

describe source code. At the end, I picked FAMIX for its complete coverage of the

concepts in many object-oriented programming languages.

Moreover, it was not a straightforward task to capture every single concept shared by

every single OOP language. For example, some may argue that Java is not truly

object-oriented. I studied a number of programming languages that are arguably the

more popular OOP languages, including Java, C++, and Python.

Another challenge I faced was the lack of support in semantic technologies for

Python. Most Semantic Web software is built with Java. There is close to no OWL

support for Python. As far as I know, there is only FuXi that is currently still under active

development.

With that said, there are more and more supporting tools for OWL. For example, Oracle

Database 11g supports the storage of semantic data and ontologies. We can also

perform ontology-assisted queries on relational data, and use either the built-in or a

third party reasoner when querying on semantic data.

Future Work

The roadmap for the annotation tool includes:

User feedback

The objective of an annotation tool is to facilitate software reuse and to lower the

learning curve for new programmers. Therefore, it is important to get feedback from

users to see if the tool helps them or not. Does the tool encourage engineers to

www.manaraa.com

56

annotate source code? Does the tool help new programmers understand the software

better and faster?

Versioning details

In some software versioning and source revision systems, such as Subversion,

developers are asked to annotate the updates they commit to the source code. By

expanding the ontology to include such annotation, other programmers can easily look

up this change information and know who to ask for more information if need be.

Tracking bug fixes and feature updates

Along with the annotation stored in the source revision systems, bug tracking and

feature request systems such as Bugzilla and JIRA may also provide a lot of insights to

programmers. Conventionally, the programmers include a referenced bug report

number and a brief description of the changes made. We may find details on past and

current outstanding issues found in a software system. By understanding the bugs

found in the past, new programmers may be able to avoid making the same mistakes in

the future. This information may also provide insights on what changes may have

caused new bugs.

Support more language specific concepts

In the future, the ontology used by the tool may be extended to support language

specific concepts. For example, we may include access modifiers. They affect how a

method may be reused, even though the same concept does not apply to other

programming languages such as Python.

Support more unit test frameworks

Since the ultimate goal is to create an annotation tool that supports as many

www.manaraa.com

57

programming languages as possible, it would make sense to include more than one test

framework, allowing automated test execution for every language. In the future, we

may expand the list of supported unit testing frameworks.

Automatic query creation

With information expressed in OWL, we can take advantage of the reasoning capability

and its powerful search functionality using query languages, such as

SQWRL. However, one needs to learn the query syntax. Therefore, I would like to

create a user interface to guide users in creating such queries.

Reasoning Support

One of the main advantages of representing domain knowledge in OWL is its reasoning

capability. It provides logical inference, given the information at hand, thus providing

better solutions for commonly asked questions by programmers. As of today, there

exist no reasoners written in Python. However, we can use PelletServer as the backend

reasoning system. It appears to be universally accessible via a REST interface,

allowing a Python program to get its service by issuing an HTTP GET.

Adding Rules

While OWL allows us to adequately model software components and service by defining

terms to describe the hierarchical structures and their properties, the expressivity of

OWL is not sufficient to describe implication rules, modalities and probabilities that are

needed for a proper reasoning in determining whether a component may be reused. In

the future, I would like to add rules to support behavior variability in response to different

situations in various environments.

www.manaraa.com

58

Semi-auto / Auto annotation

Currently, this tool requires manual annotations. While the benefits of storing

annotations in a form of ontology outnumber its drawbacks, the annotation process may

be too tedious for many engineers and defeat the purpose of the tool which is to speed

up the development process. Therefore, in the future, I would like to look into

automating parts of annotation process, freeing users from having to manually identify

code fragment. Parts that may be good candidates for automation include the structure

of the code fragment. We may identify the type of code it is by learning the reserved

keywords with specific meaning and predefined functions. We may also get some

insights as to what a function/method is expected to do by dissecting its identifier.

www.manaraa.com

59

Figure 3.3

www.manaraa.com

60

Chapter 4

This chapter will conclude this thesis with a discussion of what is still missing and a

proposal of future research ideas for the field of semantic software engineering. I will

also wrap up by summarizing this thesis at the end.

4.1 Future Research Directions

Although we can see that semantic software engineering has come a long way [68],

more effort is still needed before machines can perform the entire development cycle

without human interventions.

Requirements engineering framework

Requirement engineering has received tremendous amount of attention in the semantic

computing community. Researchers have approached a number of approaches to use

ontologies to detect inconsistencies, ambiguities, and incompleteness in

requirements. Researchers should focus on creating a framework that allows

requirements engineers to not only describe requirements specification documents, but

also to formally represent requirements and the application domain knowledge. Having

an integrated framework allows stakeholders to collaborate and significantly improve RE

processes.

Automating testing

While engineers can now easily automate the execution of unit tests, we must still first

manually develop the test cases. Test case generation is an active research area with

lots of potentials. Many researchers have proposed creating test cases from API or

formal specifications. In the future, researchers may consider generating automatically

www.manaraa.com

61

from requirements in natural language. Other potential applications of ontologies in

software testing include test planning and test oracle. Ontologies may be used to

describe activities and tasks commonly performed in a test cycle. The automated

reasoning capability also helps automate test oracle. They may also focus on creating

a test framework that can automate the entire test process, from test case generations

to verifications.

Automatic documentation generation

It is often more difficult to analyze source code with in-line documentations because we

need to first differentiate free text from the formal language before applying NLP

techniques on the comments in the source code . There are currently a number of tools

that use the special tags or other semi-structured language embedded in the source

code to automatically generate APIs (Java) or documentations in XML format (C#). In

the future, researchers may try to generate documentation by extracting semantic

information directly from the source code, to avoid inconsistency between the code and

its relevant documentation.

Quality assessment

Currently, there are a number of approaches proposed to use ontology to evaluate the

quality of requirements specifications. A quality ontology may be used to represent

metrics for software evaluations. Together with other ontologies that describes the

source code and other software artifacts, it may be used to assess the quality of

software artifacts.

Troubleshooting and understanding proprietary systems

Today, research efforts tend to focus on open-source software systems due to its

www.manaraa.com

62

availability. Engineers and software users can, however, benefit greatly from a

repository of useful troubleshooting tips for proprietary systems. Ontology may be used

store and organize such knowledge gathered from forums and users documentations.

Code smell / Bug detection

Often times, it takes longer to fix a bug than to implement a new feature for a software

system. Ontology may be used to store the ever-growing bug information for future

reference and for sharing with other developers. In the future, researchers can

incorporate knowledge described in a bug ontology, a design pattern and an anti-pattern

ontology in a tool to help detect bugs and suggest ways to reverse the code smell in

software systems.

Transforming requirements into software artifacts

Ultimately, we would like to simply be able to transform requirements expressed in

natural language by customers into source code and other software artifacts. While

many IDE’s can already automate daily mundane tasks for developers, there is still a

significant gap between requirement specifications and software artifacts. We are still

missing a tool that can extract meanings from requirements. Researchers can extract

models from text using NLP techniques. Many researchers have also shown that it is

possible to create UML models from free-text requirements. Researchers should

pursue the automatic generation of source code from domain models in the future.

4.2 Summary

In this thesis, I went over how we may complement software engineering with

www.manaraa.com

63

ontologies, and tackle a variety of challenges encountered in the software development

cycle. I provided a review on current status of semantic software engineering and went

over the advantages of applying ontologies in the various tasks in the software

development cycle. I presented a number of ontologies that were designed to improve

each phase in the waterfall model. I analyzed the usage of the different approaches

proposed to facilitate tasks in the development of software engineering. I introduced an

application of semantic annotation by presenting a tool that guides users in the capture

of relevant information. This information allows the tool to then create an ontology for

sharing and retrieval at a later time. The prototype is still a work-in-progress, but I

believe the preliminary result has shown benefits in its usage.

I also pointed out areas that may be improved with the help of semantic technologies,

and suggested future research directions in semantic software engineering.

www.manaraa.com

64

References

[1] T. R. Gruber. A translation approach to portable ontologies. Knowledge Acquisition,
5(2):199-220, 1993.

[2] What is meta-modeling? http://infogrid.org/trac/wiki/Reference/WhatIsMetaModeling

[3] H. Kattenstroth, W. May, and F. Schenk. Combining OWL with F-Logic Rules and
Defaults. In Proc. ALPSWS 2007, pp. 60-75, 2007.

[4] SPARQL http://www.w3.org/TR/rdf-sparql-query

[5] E. Sirin and B. Parsia. SPARQL-DL: SPARQL Query for OWLDL. In Christine
Golbreich, Aditya Kalyanpur, and Bijan Parsia, editors, 3rd OWL Experiences and
Directions Workshop (OWLED 2007), volume 258. CEUR Proceedings, 2007.

[6] M.J. O'Connor, A.K Das. SQWRL: a query language for OWL. OWL: Experiences
and Directions (OWLED), Fifth International Workshop, Chantilly, VA, 2009.

[7] Protege http://protege.stanford.edu/

[8] Apache Jena http://incubator.apache.org/jena/

[9] E. Sirin, B. Parsia, B.C. Grau, A. Kalyanpur, Y. Katz. Pellet: A Practical OWL-DL
Reasoner, Tech. Rep. CS 4766, University of Maryland, College Park, 2005.

[10] Hermit OWL Reasoner http://hermit-reasoner.com/

[11] FaCT++ http://owl.man.ac.uk/factplusplus/

[12] T. Gruber. Ontology. Entry in the Encyclopedia of Database Systems, Ling Liu and
M. Tamer Özsu (Eds.), Springer-Verlag, to appear in 2008.

[13] D.M. Pisanelli, A. Gangemi, G. Steve. Ontologies and Information Systems: the
Marriage of the Century?. In Proceedings of LYEE Workshop, Paris, 2002.

[14] P. Zave. Classification of research efforts in requirements engineering. ACM Comp.
Sur., 29(4):315–321, 1997.

[15] S. J. Kormer and T. Brumm. RESI - A Natural Language Specification Improver.
International Conference on Semantic Computing, 0:1–8, 2009.

[16] T. Riechert, K. Lauenroth, J. Lehmann, S. Auer. Towards Semantic based
Requirements Engineering. Proceedings of the 7th International Conference on
Knowledge Management, 144-151, 2007.

www.manaraa.com

65

[17] G. Dobson and P. Sawyer. Revisiting Ontology-Based Requirements Engineering
in the age of the Semantic Web. International Seminar on "Dependable Requirements
Engineering of Computerised Systems at NPPs", Institute for Energy Technology (IFE),
Halden, 2006.

[18] T. H. A. Balushi, P. R. F. Sampaio, D. Dabhi, P. Loucopoulos. ElicitO: A quality
ontology-guided NFR elicitation tool. In Requirements Engineering: Foundation for
Software Quality, pages 306-319. Springer Berlin / Heidelberg, 2007.

[19] P. Soffer, B. Golany, D. Dori, Y. Wand. Modeling off the-shelf information systems
requirements: an ontological approach, Requirements Eng. 6, 183–199, 2001.

[20] J.C. Caralt, J.W. Kim, "Ontology Driven Requirements Query," hicss, pp.197c,
40th Annual Hawaii International Conference on System Sciences (HICSS'07), 2007.

[21] M. Shibaoka, H. Kaiya, and M. Saeki. GOORE: Goal-Oriented and Ontology
Driven Requirements Elicitation Method. In Advances in Conceptual Modeling -
Foundations and Applications, pages 225-234, Auckland, New Zealand, Nov. 2007.
Springer. LNCS 4802.

[22] S.W. Lee and R.A. Gandhi. Ontology-based Active Requirements Engineering
Framework. Proceedings of 12th Asia-Pacific Software Engineering Conf. (APSEC ’05),
Taiwan, IEEE CS Press, 2005.

[23] B. Decker, E. Ras, J. Rech, B. Klein, C. Hoecht. Self-organized reuse of software
engineering knowledge supported by semantic wikis, in: Proceedings of the Workshop
on Semantic Web Enabled Software Engineering (SWESE), ISWC, Galway, Ireland,
2005.

[24] V.S. Sharma, S. Sarkar, K. Verma, A. Panayappan, A. Kass. Extracting High-Level
Functional Design from Software Requirements. APSEC, 35-42, 2009.

[25] K. Czarnecki, C.H.P. Kim, K.T. Kalleberg: Feature Models are Views on Ontologies.
SPLC, 41-51, 2006.

[26] S. J. Korner and M. Landhaußer. Semantic Enriching of Natural Language Texts
with Automatic Thematic Role Annotation. NLDB 2010, June 2010.

[27] S.J. Korner and T. Brumm. RESI - A Natural Language Specification Improver.
International Conference on Semantic Computing, 0:1-8, 2009.

[28] A. Eberhart. Automatic Generation of Java/SQL Based Inference Engines from
RDF Schema and RuleML. International Semantic Web Conference, 102-116, 2002.

www.manaraa.com

66

[29] A. Kalyanpur, D. Jim´enez Pastor, S. Battle, and J. Padget. Automatic mapping of
OWL ontologies into Java. In 16th International Conference on Software Engineering
and Knowledge Engineering (SEKE), Banff, Canada, 2004

[30] G. Stevenson, S. Dobson. Sapphire: Generating java runtime artefacts from owl
ontologies. In: CAiSE Workshops. pp. 425–436, 2011.

[31] E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented software, Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, 1995.

[32] H. Kampffmeyer, S. Zschaler, G. Engels, B. Opdyke, D.C. Schmidt, F. Weil. Finding
the pattern you need: The design pattern intent ontology. In: Engels, G., Opdyke, B.,
Schmidt, D.C., Weil, F. (eds.) MODELS 2007. LNCS, vol. 4735, 211-225. Springer,
Heidelberg, 2007.

[33] Z. Zygkostiotis, D. Dranidis, D. Kourtesis, Semantic Annotation, Publication and
Discovery of Java Software Components: An Integrated Approach. In Proceedings of
the 2nd Workshop on Artificial Intelligence Techniques in Software Engineering, 5th IFIP
Conference on Artificial Intelligence Applications and Innovations, 2009.

[34] K. Kannan and B. Srivastava. Promoting reuse via extraction of domain concepts
and service abstractions from design diagrams. Proceedings of SCC, 2008.

[35] H. Happel, A. Korthaus, S. Seedorf, P. Tomczyk. KOntoR: An Ontology-enabled
Approach to Software Reuse. SEKE, 349-354, 2006.

[36] V. Sugumaran and V.C. Storey. A Semantic-Based Approach to Component
Retrieval. The DATA BASE for Advances in Information Systems 34, 8–24
Quarterly publication of the Special Interest Group on Management Information
Systems of the Association for Computing Machinery (ACM-SIGMIS), 2003.

[37] T. Emerson, J. Reising, and H. Britten-Austin. Workload and Situation Awareness
in Future Aircraft. SAE Technical Paper 871803, 1987.

[38] C. J. Matheus, K. Baclawski, M. M. Kokar, J. Letkowski: Using SWRL and OWL to
Capture Domain Knowledge for a Situation Awareness Application Applied to a Supply
Logistics Scenario. RuleML , 130-144, 2005.

[39] N. Baumgartner, W. Retschitzegger, W. Schwinger. A Software Architecture for
Ontology-Driven Situation Awareness, ACM SA Conference, 2008.

[40] Y. Luo. Improving Software Quality Using An Ontology-based Approach. LAP
Lambert Academic, 2010.

www.manaraa.com

67

[41] L. Yu, J. Zhou, Y. Yi, P. Li, Q. Wang. Ontology Model-Based Static Analysis on
Java Programs, The 32nd Annual IEEE International Computer Software and
Applications Conference, 92-99, 2008.

[42] A. Rauf, S. Anwar, M. Ramzan, A.A. Shahid. Ontology Driven
Semantic Annotation Based GUI Testing. IEEE International Conference on Emerging
Technologies 2010 (ICET 2010) Islamabad, Pakistan, October 18-19, 2010.

[44] V. H. Nasser, W. Du, and D.MacIsaac. Knowledge-based Software Test Generation,
in Proceedings of the 21st International Conference on Software Engineering and
Knowledge Engineering, Boston, July, 2009.

[46] D.C. Nguyen, A. Perini, P. Tonella. eCAT: a tool for automating test cases
generation and execution in testing multi-agent systems. AAMAS, 1669-1670, 2008.

[47] M. Serhatli, F.N. Alpaslan. An ontology based question answering system on
software test document domain. World Academy of Science, Engineering and
Technology, 2009.

[48] IEEE Std. 610.12, Standard Glossary of Software Engineering Terminology. IEEE
Computer Society Press, Los Alamitos, CA, 1990.

[49] B.A. Kitchenham, G.H. Travassos, A. Von Mayrhauser, F. Niessink, N.F.
Schniedewind, J. Singer, S. Takado, R. Vehvilainen, H. YANG. Towards an Ontology of
Software Maintenance, Journal of Software Maintenance: Research and Practice,
11(6):365-389, 1999.

[50] F. Ruiz, A. Vizcaíno, M. Piattini, and F. García, An ontology for the management of
software maintenance projects. International Journal of Software Engineering and
Knowledge Engineering, 14(3):323–349, 2004.

[51] M.G. Dias, N. Anquetil, K.M. De Oliveira. Organizing the Knowledge Used in
Software Maintenance. Journal of Universal Computer Science, 9(7): 641–658, 2003.

[52] W. Meng, J. Rilling, Y. Zhang, R. Witte, P. Charland, “An Ontological Software
Comprehension Process Model”, In Proc. of the 3rd International Workshop on
Metamodels, Schemas, Grammars, and Ontologies for Reverse Engineering, Italy, 2006.

[53] S.L. Abebe, P. Tonella. Natural Language Parsing of Program Element Names for
Concept Extraction. ICPC, 156-159, 2010.

[54] A. Hass. What is Configuration Management from Software Configuration
Management: Principles and Practices; Addison-Wesley, December 2002.

[55] H.H. Shahri, J. Hendler, A. Porter. Software Configuration Management Using
Ontologies. Proceedings of the 3rd International Workshop on Semantic Web Enabled

www.manaraa.com

68

Software Engineering at the 4th European Semantic Web Conference (ESWC’07),
Innsbruck, Austria, June 6-7, 2007.

[56] D. Hyland-Wood, D. Carrington, and S. Kaplan. Toward a Software Maintenance
Methodology Using Semantic Web Techniques. Proceedings of Second International
IEEE Workshop Software Evolvability, 23-30, Sept. 2006.

[57] J. Tappolet, C. Kiefer, A. Bernstein. Semantic web enabled software analysis. Web
Semantic. Sci. Serv. Agents World Wide Web 8, 225–240, 2010.

[58] FuXi http://code.google.com/p/fuxi/

[59] R. Witte, Y. Zhang, and J. Rilling. Empowering Software Maintainers with Semantic
Web Technologies. 4th European Semantic Web Conference, June 3-7, 2007,
Innsbruck, Austria. Springer LNCS 4519, 37-52, 2007.

[60] A. Ambrosio, D. Santos, F. Lucena, J. Silva. Software engineering documentation:
an ontology-based approach. Proceedings of the 10th Brazilian Symposium on
Multimedia and the Web 2nd Latin American Web Congress, Oct. 2004.

[61] N. Khamis, R. Witte, J. Rilling. Automatic Quality Assessment of Source Code
Comments: The JavadocMiner. 15th International Conference on Applications of Natural
Language to Information Systems, June 23–25, Cardiff, UK. Springer LNCS 6177, 68–
79, 2010.

[62] S. Fenz and E. Weippl. Ontology based IT-security planning. Proceedings of the
12th Pacific Rim International Symposium on Dependable Computing PRDC '06. IEEE
Computer Society, 389-390, 2006.

[63] J. Undercoffer, A. Joshi, J. Pinkston. Modeling Computer Attacks: An Ontology for
Intrusion Detection. in The Sixth International Symposium on Recent Advances in
Intrusion Detection. Springer, 2003.

[64] A Course in Black Box Software Testing, Cem Kaner 2004

[65] wxPython http://www.wxpython.org

[66] Xunit Test Patterns http://xunitpatterns.com/

[67] Web Ontology Language http://www.w3.org/TR/owl-features/

[68] L. Moulton. "Semantic Software Technologies: Landscape of High Value
Applications for the Enterprise."
http://www.expertsystem.net/documenti/pdf_eng/technology/semanticsoftwaretechnolog
ies_gilbane2010.pdf. 5 Aug. 2010. Web. 1 Mar. 2012

www.manaraa.com

69

[69] I. Sommerville and P. Sawyer. Requirements Engineering: A Good Practice Guide.
Wiley, Apr. 1997.

www.manaraa.com

70

Appendix A

#!/usr/bin/env python

def partition(list, start, end):
pivot = list[end]
bottom = start-1
top = end

done = 0
while not done:

while not done:
bottom = bottom+1

if bottom == top:
done = 1
break

if list[bottom] > pivot:
list[top] = list[bottom]
break

while not done:
top = top-1

if top == bottom:
done = 1
break

if list[top] < pivot:
list[bottom] = list[top]
break

list[top] = pivot
return top

def quicksort(list, start, end):
if start < end:

split = partition(list, start, end)
quicksort(list, start, split-1)
quicksort(list, split+1, end)

else:
return

www.manaraa.com

71

if __name__=="__main__":
import sys
list = map(int,sys.argv[1:])
start = 0
end = len(list)-1
quicksort(list,start,end)
import string
print string.join(map(str,list))

www.manaraa.com

72

Appendix B

import quicksort
import unittest
import random

class TestQuickSort(unittest.TestCase):
def setUp(self):

self.list = range(100)
random.shuffle(self.list)

def testNormalInput(self):
'''check if normal input works'''
quicksort.quicksort(self.list, 0, len(self.list)-1)
log = self.assertEqual(self.list, range(100))
print "testNormalInput : ", log

def testOneNumber(self):
input = self.list[0]
quicksort.quicksort(input, 0, 0)
log = self.assertEqual(input, self.list[0])
print "testOneNumber : ", log

def testNegativeInput(self):
counter = 0
for n in self.list:

n = n * -1
self.list[counter] = n
counter = counter + 1

input = self.list
self.list.sort()
quicksort.quicksort(input, 0, len(input)-1)
log = self.assertEqual(self.list, input)
print "testNegativeInput : ", log

def testNonIntegers(self):
alist = ['a', 'b', 'c', 'd', 'e']
input = alist
random.shuffle(input)
quicksort.quicksort(input, 0, len(input)-1)
log = self.assertEqual(alist, input)
print "testNonIntegers : ", log

def testSameInput(self):
counter = 0

www.manaraa.com

73

for n in self.list:
self.list[counter] = self.list[0]
counter = counter+1

input = self.list
quicksort.quicksort(input, 0, len(input)-1)
log = self.assertEqual(input, self.list)
print "testSameInput : ", log

def testSortedList(self):
self.list.sort()
quicksort.quicksort(self.list, 0, len(self.list)-1)
log = self.assertEqual(self.list, range(5))
print "testSortedList : ", log

def testReversedList(self):
self.list.sort(reverse=True)
quicksort.quicksort(self.list, 0, len(self.list)-1)
log = self.assertEqual(self.list, range(100))
print "testReversedList : ", log

def PrintResult(log):
f = open('result.log', 'w')
f.write(log)

if __name__ == '__main__':
import sys
suite = unittest.TestLoader().loadTestsFromTestCase(TestQuickSort)
unittest.TextTestRunner(stream=sys.stdout, verbosity=2).run(suite)

